Backpropagation Algorithm – Machine Learning – Artificial Neural Network
In this tutorial i will discuss the Backpropagation Algorithm and its implementation in Python.
Video Tutorial on Backpropagation Algorithm
BACKPROPAGATION (training_example, ƞ, nin, nout, nhidden)
Each training example is a pair of the form (𝑥, 𝑡), where (𝑥) is the vector of network input values, and (𝑡) is the vector of target network output values.
ƞ is the learning rate (e.g., 0.05).
ni, is the number of network inputs,
nhidden the number of units in the hidden layer, and
nout the number of output units.
The input from unit i into unit j is denoted xji, and the weight from unit i to unit j is denoted wji
Steps in Backpropagation algorithm
1. Create a feed-forward network with ni inputs, nhidden hidden units, and nout output units.
2. Initialize all network weights to small random numbers
3. Until the termination condition is met, Do
For each (𝑥, t), in training examples, Do
Propagate the input forward through the network:
1. Input the instance 𝑥, to the network and compute the output ou of every unit u in the network.
Propagate the errors backward through the network
2. For each network unit k, calculate its error term δk
3. For each network unit h, calculate its error term δh
4. Update each network weight wji
Python Program to Implement and Demonstrate Backpropagation Algorithm Machine Learning
import numpy as np X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float) y = np.array(([92], [86], [89]), dtype=float) X = X/np.amax(X,axis=0) #maximum of X array longitudinally y = y/100 #Sigmoid Function def sigmoid (x): return 1/(1 + np.exp(-x)) #Derivative of Sigmoid Function def derivatives_sigmoid(x): return x * (1 - x) #Variable initialization epoch=5 #Setting training iterations lr=0.1 #Setting learning rate inputlayer_neurons = 2 #number of features in data set hiddenlayer_neurons = 3 #number of hidden layers neurons output_neurons = 1 #number of neurons at output layer #weight and bias initialization wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons)) bh=np.random.uniform(size=(1,hiddenlayer_neurons)) wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons)) bout=np.random.uniform(size=(1,output_neurons)) #draws a random range of numbers uniformly of dim x*y for i in range(epoch): #Forward Propogation hinp1=np.dot(X,wh) hinp=hinp1 + bh hlayer_act = sigmoid(hinp) outinp1=np.dot(hlayer_act,wout) outinp= outinp1+bout output = sigmoid(outinp) #Backpropagation EO = y-output outgrad = derivatives_sigmoid(output) d_output = EO * outgrad EH = d_output.dot(wout.T) hiddengrad = derivatives_sigmoid(hlayer_act)#how much hidden layer wts contributed to error d_hiddenlayer = EH * hiddengrad wout += hlayer_act.T.dot(d_output) *lr # dotproduct of nextlayererror and currentlayerop wh += X.T.dot(d_hiddenlayer) *lr print ("-----------Epoch-", i+1, "Starts----------") print("Input: \n" + str(X)) print("Actual Output: \n" + str(y)) print("Predicted Output: \n" ,output) print ("-----------Epoch-", i+1, "Ends----------\n") print("Input: \n" + str(X)) print("Actual Output: \n" + str(y)) print("Predicted Output: \n" ,output)
Training Examples:
Example | Sleep | Study | Expected % in Exams |
1 | 2 | 9 | 92 |
2 | 1 | 5 | 86 |
3 | 3 | 6 | 89 |
Normalize the input
Example | Sleep | Study | Expected % in Exams |
1 | 2/3 = 0.66666667 | 9/9 = 1 | 0.92 |
2 | 1/3 = 0.33333333 | 5/9 = 0.55555556 | 0.86 |
3 | 3/3 = 1 | 6/9 = 0.66666667 | 0.89 |
Output
———–Epoch- 1 Starts———-
Input:
[[0.66666667 1. ]
[0.33333333 0.55555556]
[1. 0.66666667]]
Actual Output:
[[0.92]
[0.86]
[0.89]]
Predicted Output:
[[0.81951208]
[0.8007242 ]
[0.82485744]]
———–Epoch- 1 Ends———-
———–Epoch- 2 Starts———-
Input:
[[0.66666667 1. ]
[0.33333333 0.55555556]
[1. 0.66666667]]
Actual Output:
[[0.92]
[0.86]
[0.89]]
Predicted Output:
[[0.82033938]
[0.80153634]
[0.82568134]]
———–Epoch- 2 Ends———-
———–Epoch- 3 Starts———-
Input:
[[0.66666667 1. ]
[0.33333333 0.55555556]
[1. 0.66666667]]
Actual Output:
[[0.92]
[0.86]
[0.89]]
Predicted Output:
[[0.82115226]
[0.80233463]
[0.82649072]]
———–Epoch- 3 Ends———-
———–Epoch- 4 Starts———-
Input:
[[0.66666667 1. ]
[0.33333333 0.55555556]
[1. 0.66666667]]
Actual Output:
[[0.92]
[0.86]
[0.89]]
Predicted Output:
[[0.82195108]
[0.80311943]
[0.82728598]]
———–Epoch- 4 Ends———-
———–Epoch- 5 Starts———-
Input:
[[0.66666667 1. ]
[0.33333333 0.55555556]
[1. 0.66666667]]
Actual Output:
[[0.92]
[0.86]
[0.89]]
Predicted Output:
[[0.8227362 ]
[0.80389106]
[0.82806747]]
———–Epoch- 5 Ends———-
Input:
[[0.66666667 1. ]
[0.33333333 0.55555556]
[1. 0.66666667]]
Actual Output:
[[0.92]
[0.86]
[0.89]]
Predicted Output:
[[0.8227362 ]
[0.80389106]
[0.82806747]]
Summary
This tutorial discusses Backpropagation Algorithm in Machine Learning and how to Implement and demonstrate the Backpropagation Algorithm in Python. If you like the tutorial share it with your friends. Like the Facebook page for regular updates and YouTube channel for video tutorials.