Implementation of AO Star Search Algorithm in python

 

Implementation of AO Star Search Algorithm in python – Artificial Intelligence

In this tutorial, we will understand the AO Star Search Algorithm with a solved numerical example and implementation in python.

Implementation of AO Star Search Algorithm in python

class Graph:
    def __init__(self, graph, heuristicNodeList, startNode): #instantiate graph object with graph topology, heuristic values, start node
        self.graph = graph
        self.H=heuristicNodeList
        self.start=startNode
        self.parent={}
        self.status={}
        self.solutionGraph={}
        
    def applyAOStar(self): # starts a recursive AO* algorithm
        self.aoStar(self.start, False)

    def getNeighbors(self, v): # gets the Neighbors of a given node
        return self.graph.get(v,'')

    def getStatus(self,v): # return the status of a given node
        return self.status.get(v,0)

    def setStatus(self,v, val): # set the status of a given node
        self.status[v]=val

    def getHeuristicNodeValue(self, n):
        return self.H.get(n,0) # always return the heuristic value of a given node

    def setHeuristicNodeValue(self, n, value):
        self.H[n]=value # set the revised heuristic value of a given node

    def printSolution(self):
        print("FOR GRAPH SOLUTION, TRAVERSE THE GRAPH FROM THE START NODE:",self.start)
        print("------------------------------------------------------------")
        print(self.solutionGraph)
        print("------------------------------------------------------------")

    def computeMinimumCostChildNodes(self, v): # Computes the Minimum Cost of child nodes of a given node v
        minimumCost=0
        costToChildNodeListDict={}
        costToChildNodeListDict[minimumCost]=[]
        flag=True
        for nodeInfoTupleList in self.getNeighbors(v): # iterate over all the set of child node/s
            cost=0
            nodeList=[]
            for c, weight in nodeInfoTupleList:
                cost=cost+self.getHeuristicNodeValue(c)+weight
                nodeList.append(c)
            if flag==True: # initialize Minimum Cost with the cost of first set of child node/s
                minimumCost=cost
                costToChildNodeListDict[minimumCost]=nodeList # set the Minimum Cost child node/s
                flag=False
            else: # checking the Minimum Cost nodes with the current Minimum Cost
                if minimumCost>cost:
                    minimumCost=cost
                    costToChildNodeListDict[minimumCost]=nodeList # set the Minimum Cost child node/s
        return minimumCost, costToChildNodeListDict[minimumCost] # return Minimum Cost and Minimum Cost child node/s

    def aoStar(self, v, backTracking): # AO* algorithm for a start node and backTracking status flag
        print("HEURISTIC VALUES :", self.H)
        print("SOLUTION GRAPH :", self.solutionGraph)
        print("PROCESSING NODE :", v)
        print("-----------------------------------------------------------------------------------------")
        if self.getStatus(v) >= 0: # if status node v >= 0, compute Minimum Cost nodes of v
            minimumCost, childNodeList = self.computeMinimumCostChildNodes(v)
            print(minimumCost, childNodeList)
            self.setHeuristicNodeValue(v, minimumCost)
            self.setStatus(v,len(childNodeList))
            solved=True # check the Minimum Cost nodes of v are solved
            for childNode in childNodeList:
                self.parent[childNode]=v
                if self.getStatus(childNode)!=-1:
                    solved=solved & False
            if solved==True: # if the Minimum Cost nodes of v are solved, set the current node status as solved(-1)
                self.setStatus(v,-1)
                self.solutionGraph[v]=childNodeList # update the solution graph with the solved nodes which may be a part of solution
            if v!=self.start: # check the current node is the start node for backtracking the current node value
                self.aoStar(self.parent[v], True) # backtracking the current node value with backtracking status set to true
            if backTracking==False: # check the current call is not for backtracking 
                for childNode in childNodeList: # for each Minimum Cost child node
                    self.setStatus(childNode,0) # set the status of child node to 0(needs exploration)
                    self.aoStar(childNode, False) # Minimum Cost child node is further explored with backtracking status as false

Graph – 1 as Input to AO Star Search Algorithm

Implementation of AO Star Search Algorithm in python 1
#for simplicity we ll consider heuristic distances given
print ("Graph - 1")
h1 = {'A': 1, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 5, 'H': 7, 'I': 7, 'J': 1}
graph1 = {
    'A': [[('B', 1), ('C', 1)], [('D', 1)]],
    'B': [[('G', 1)], [('H', 1)]],
    'C': [[('J', 1)]],
    'D': [[('E', 1), ('F', 1)]],
    'G': [[('I', 1)]]
}

G1= Graph(graph1, h1, 'A')
G1.applyAOStar()
G1.printSolution()

Output of AO Star Search Algorithm

Graph – 1

HEURISTIC VALUES : {‘A’: 1, ‘B’: 6, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 5, ‘H’: 7, ‘I’: 7, ‘J’: 1}
SOLUTION GRAPH : {}

PROCESSING NODE : A

10 [‘B’, ‘C’]
HEURISTIC VALUES : {‘A’: 10, ‘B’: 6, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 5, ‘H’: 7, ‘I’: 7, ‘J’: 1}
SOLUTION GRAPH : {}

PROCESSING NODE : B

6 [‘G’]
HEURISTIC VALUES : {‘A’: 10, ‘B’: 6, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 5, ‘H’: 7, ‘I’: 7, ‘J’: 1}
SOLUTION GRAPH : {}

PROCESSING NODE : A

10 [‘B’, ‘C’]
HEURISTIC VALUES : {‘A’: 10, ‘B’: 6, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 5, ‘H’: 7, ‘I’: 7, ‘J’: 1}
SOLUTION GRAPH : {}

PROCESSING NODE : G

8 [‘I’]
HEURISTIC VALUES : {‘A’: 10, ‘B’: 6, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 8, ‘H’: 7, ‘I’: 7, ‘J’: 1}
SOLUTION GRAPH : {}

PROCESSING NODE : B

8 [‘H’]
HEURISTIC VALUES : {‘A’: 10, ‘B’: 8, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 8, ‘H’: 7, ‘I’: 7, ‘J’: 1}
SOLUTION GRAPH : {}

PROCESSING NODE : A

12 [‘B’, ‘C’]
HEURISTIC VALUES : {‘A’: 12, ‘B’: 8, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 8, ‘H’: 7, ‘I’: 7, ‘J’: 1}
SOLUTION GRAPH : {}

PROCESSING NODE : I

0 []
HEURISTIC VALUES : {‘A’: 12, ‘B’: 8, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 8, ‘H’: 7, ‘I’: 0, ‘J’: 1}
SOLUTION GRAPH : {‘I’: []}

PROCESSING NODE : G

1 [‘I’]
HEURISTIC VALUES : {‘A’: 12, ‘B’: 8, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 1, ‘H’: 7, ‘I’: 0, ‘J’: 1}
SOLUTION GRAPH : {‘I’: [], ‘G’: [‘I’]}

PROCESSING NODE : B

2 [‘G’]
HEURISTIC VALUES : {‘A’: 12, ‘B’: 2, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 1, ‘H’: 7, ‘I’: 0, ‘J’: 1}
SOLUTION GRAPH : {‘I’: [], ‘G’: [‘I’], ‘B’: [‘G’]}

PROCESSING NODE : A

6 [‘B’, ‘C’]
HEURISTIC VALUES : {‘A’: 6, ‘B’: 2, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 1, ‘H’: 7, ‘I’: 0, ‘J’: 1}
SOLUTION GRAPH : {‘I’: [], ‘G’: [‘I’], ‘B’: [‘G’]}

PROCESSING NODE : C

2 [‘J’]
HEURISTIC VALUES : {‘A’: 6, ‘B’: 2, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 1, ‘H’: 7, ‘I’: 0, ‘J’: 1}
SOLUTION GRAPH : {‘I’: [], ‘G’: [‘I’], ‘B’: [‘G’]}

PROCESSING NODE : A

6 [‘B’, ‘C’]
HEURISTIC VALUES : {‘A’: 6, ‘B’: 2, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 1, ‘H’: 7, ‘I’: 0, ‘J’: 1}
SOLUTION GRAPH : {‘I’: [], ‘G’: [‘I’], ‘B’: [‘G’]}

PROCESSING NODE : J

0 []
HEURISTIC VALUES : {‘A’: 6, ‘B’: 2, ‘C’: 2, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 1, ‘H’: 7, ‘I’: 0, ‘J’: 0}
SOLUTION GRAPH : {‘I’: [], ‘G’: [‘I’], ‘B’: [‘G’], ‘J’: []}

PROCESSING NODE : C

1 [‘J’]
HEURISTIC VALUES : {‘A’: 6, ‘B’: 2, ‘C’: 1, ‘D’: 12, ‘E’: 2, ‘F’: 1, ‘G’: 1, ‘H’: 7, ‘I’: 0, ‘J’: 0}
SOLUTION GRAPH : {‘I’: [], ‘G’: [‘I’], ‘B’: [‘G’], ‘J’: [], ‘C’: [‘J’]}

PROCESSING NODE : A

5 [‘B’, ‘C’]

FOR GRAPH SOLUTION, TRAVERSE THE GRAPH FROM THE START NODE: A

{‘I’: [], ‘G’: [‘I’], ‘B’: [‘G’], ‘J’: [], ‘C’: [‘J’], ‘A’: [‘B’, ‘C’]}

Graph – 2 as Input to AO Star Search Algorithm

Implementation of AO Star Search Algorithm in python 1
print ("Graph - 2")
h2 = {'A': 1, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4, 'G': 5, 'H': 7} # Heuristic values of Nodes
graph2 = { # Graph of Nodes and Edges
    'A': [[('B', 1), ('C', 1)], [('D', 1)]], # Neighbors of Node 'A', B, C & D with repective weights
    'B': [[('G', 1)], [('H', 1)]], # Neighbors are included in a list of lists
    'D': [[('E', 1), ('F', 1)]] # Each sublist indicate a "OR" node or "AND" nodes
}

G2 = Graph(graph2, h2, 'A') # Instantiate Graph object with graph, heuristic values and start Node
G2.applyAOStar() # Run the AO* algorithm
G2.printSolution() # Print the solution graph as output of the AO* algorithm search

Output of AO Star Search Algorithm

Graph – 2

HEURISTIC VALUES : {‘A’: 1, ‘B’: 6, ‘C’: 12, ‘D’: 10, ‘E’: 4, ‘F’: 4, ‘G’: 5, ‘H’: 7}
SOLUTION GRAPH : {}

PROCESSING NODE : A

11 [‘D’]
HEURISTIC VALUES : {‘A’: 11, ‘B’: 6, ‘C’: 12, ‘D’: 10, ‘E’: 4, ‘F’: 4, ‘G’: 5, ‘H’: 7}
SOLUTION GRAPH : {}

PROCESSING NODE : D

10 [‘E’, ‘F’]
HEURISTIC VALUES : {‘A’: 11, ‘B’: 6, ‘C’: 12, ‘D’: 10, ‘E’: 4, ‘F’: 4, ‘G’: 5, ‘H’: 7}
SOLUTION GRAPH : {}

PROCESSING NODE : A

11 [‘D’]
HEURISTIC VALUES : {‘A’: 11, ‘B’: 6, ‘C’: 12, ‘D’: 10, ‘E’: 4, ‘F’: 4, ‘G’: 5, ‘H’: 7}
SOLUTION GRAPH : {}

PROCESSING NODE : E

0 []
HEURISTIC VALUES : {‘A’: 11, ‘B’: 6, ‘C’: 12, ‘D’: 10, ‘E’: 0, ‘F’: 4, ‘G’: 5, ‘H’: 7}
SOLUTION GRAPH : {‘E’: []}

PROCESSING NODE : D

6 [‘E’, ‘F’]
HEURISTIC VALUES : {‘A’: 11, ‘B’: 6, ‘C’: 12, ‘D’: 6, ‘E’: 0, ‘F’: 4, ‘G’: 5, ‘H’: 7}
SOLUTION GRAPH : {‘E’: []}

PROCESSING NODE : A

7 [‘D’]
HEURISTIC VALUES : {‘A’: 7, ‘B’: 6, ‘C’: 12, ‘D’: 6, ‘E’: 0, ‘F’: 4, ‘G’: 5, ‘H’: 7}
SOLUTION GRAPH : {‘E’: []}

PROCESSING NODE : F

0 []
HEURISTIC VALUES : {‘A’: 7, ‘B’: 6, ‘C’: 12, ‘D’: 6, ‘E’: 0, ‘F’: 0, ‘G’: 5, ‘H’: 7}
SOLUTION GRAPH : {‘E’: [], ‘F’: []}

PROCESSING NODE : D

2 [‘E’, ‘F’]
HEURISTIC VALUES : {‘A’: 7, ‘B’: 6, ‘C’: 12, ‘D’: 2, ‘E’: 0, ‘F’: 0, ‘G’: 5, ‘H’: 7}
SOLUTION GRAPH : {‘E’: [], ‘F’: [], ‘D’: [‘E’, ‘F’]}

PROCESSING NODE : A

3 [‘D’]

FOR GRAPH SOLUTION, TRAVERSE THE GRAPH FROM THE START NODE: A

{‘E’: [], ‘F’: [], ‘D’: [‘E’, ‘F’], ‘A’: [‘D’]}

Summary:

In this tutorial, we understood the AO Star Search Algorithm with a solved numerical example and implementation in python. If you like the tutorial share it with your friends. Like the Facebook page for regular updates and YouTube channel for video tutorials.

Leave a Comment

Your email address will not be published. Required fields are marked *

Welcome to VTUPulse.com


Computer Graphics and Image Processing Mini Projects -> Click Here

Download Final Year Project -> Click Here

This will close in 12 seconds